Climatic Implications for Restoration of Ecosystems on the Colorado Plateau Under a Changing Climate

Barry Baker^{1,2}, Rob Gillies², Simon Wang² and Troy Wood³

¹The Nature Conservancy, Moab, UT; ²Utah State University, Logan, UT; ³U.S. Geological Survey, Flagstaff, AZ

"All is flux, nothing is stationary; Nothing endures but change"

....Heraclitus (540 – 475 BC)

Medieval Drought on the Colorado River

(From tree-ring reconstructions)

Meko et al. 2007

Precipitation Patterns Across the Intermountain West

Wang et al., 2009

Wang, S.-Y., R. R. Gillies, E. S. Takle, and W. J. Gutowski Jr. (2009), Evaluation of precipitation in the Intermountain Region as simulated by the NARCCAP regional climate models, Geophys. Res. Lett., 36, L11704, doi:10.1029/2009GL037930.

Notaro, M., Z. Liu, R. G. Gallimore, J. W. Williams, D. S. Gutzler, and S. Collins (2010), Complex seasonal cycle of ecohydrology in the Southwest United States, J. Geophys. Res., 115, G04034, doi:10.1029/2010JG001382.

Trend in Annual Moisture Availability (PPT minus PET)

Trends in Winter and Summer Precipitation 1950 - 2011

Trends in Spring Temperature 1950 - 2011

National Climate Data Center Climate Division Stations (Data Adjusted for Inhomogeneities)

96 Stations with complete monthly records for the years 1950 – 2011

Elevational Range: 844 – 2814 m

Latitudinal Range: 33.47° – 42.88° N

Annual Trend (1950-2011) for Jul-Aug-Sept Precipitation

Data source: Daly et al 2007. 103-Year High-Resolution Temperature Climate Data Set for the Conterminous United States. Online URL:ftp://ftp.ncdc.noaa.gov/pub/data/prism100

Annual Trend (1950-2011) in July-August-September Seasonal Precipitation for Stations in the Region

15 of the 96 station have significant trend p < 0.1

3 of the 15 stations $\ lacktriangledown$

Annual Trend (1950-2011) in July-August-September Seasonal Precipitation for Stations in the Region

15 of the 96 station have significant trend p < 0.1

12 of the 15 stations \spadesuit

Stn_ID_297386 JAS Precipitation Annual Trend

Annual Trend (1950-2011) for Winter Precipitation

Data source: Daly et al 2007. 103-Year High-Resolution Temperature Climate Data Set for the Conterminous United States. Online URL:ftp://ftp.ncdc.noaa.gov/pub/data/prism100

Annual Trend (1950-2011) in Oct-Nov-Dec-Jan-Feb-Mar Seasonal Precipitation for Stations in the Region

33 of the 96 station have significant trend p < 0.1

8 of the 33 stations **J**

Annual Trend (1950-2011) in Oct-Nov-Dec-Jan-Feb-Mar Seasonal Precipitation for Stations in the Region

33 of the 96 station have significant trend p < 0.1

25 of the 33 stations 🛧

Stn_ID_424508 ONDJFM Precipitation Annual Trend

A Change in the Mean is only Part of the Story!

Standardized Anomaly For ONDJFM Precipitation

Stn_ID_292785 El Morro N.M. Standardized Anamoly

Stn_ID_292785 El Morro N.M. IMF=1 Period=3.5yrs

Stn_ID_292785 El Morro N.M. IMF=3 Period=10.6yrs

Empirical Mode Decomposition

Huang et al 1998. Proc. Roy Soc London A.454:903-995

Comparison of the Standardized Anomaly of Oct-Nov-Dec-Jan-Feb-Mar Precipitation and Annual PDO Index (1950-2011) (El Morro National Monument)

Source of PDO data: Univ. of Washington http://jisao.washington.edu/pdo/PDO.latest

This is
Intriguing but
Needs More
Investigation!!

Analysis of Jul-Aug-Sept NAM Precipitation

— PC1 Coefficient Series

PDO Index

9 year lowpass filter

Summary

- Winter and summer monsoon precipitation are import factors in ecohydrology of the Colorado Plateau.
- Simulated precipitation from current climate models is inconsistent (timing and amount) with observed on the Colorado Plateau.
- Precipitation in the NW NAM region (Utah) fluctuates weakly in summer and more strongly in winter.
- Precipitation in the NE NAM region (SW Colorado) exhibits noticeable variability in summer, which is modulated by the PDO.
- Empirical Mode Decomposition provides a more robust method for analyzing non-stationary data.
- By analyzing the intrinsic functional modes of variability we may gain a better understanding of how precipitation may change in the near future.

